พารามิเตอร์ทางเทคนิคหลัก
โครงการ | ลักษณะเฉพาะ | ||
ช่วงอุณหภูมิ | -40~+70℃ | ||
จัดอันดับแรงดันไฟฟ้าที่ใช้งาน | 2.7V | ||
ช่วงความจุ | -10%~+30%(20℃) | ||
ลักษณะอุณหภูมิ | อัตราการเปลี่ยนแปลงความจุ | |△ค/ค(+20℃)|≤30% | |
ESR | น้อยกว่า 4 เท่าของค่าที่ระบุ (ในสภาพแวดล้อม -25°C) | ||
ความทนทาน | หลังจากใช้แรงดันไฟฟ้าที่กำหนด (2.7V) อย่างต่อเนื่องที่ +70°C เป็นเวลา 1000 ชั่วโมง เมื่อกลับไปที่ 20°C เพื่อทำการทดสอบ จะเป็นไปตามรายการต่อไปนี้ | ||
อัตราการเปลี่ยนแปลงความจุ | ภายใน ±30% ของค่าเริ่มต้น | ||
ESR | น้อยกว่า 4 เท่าของมูลค่ามาตรฐานเริ่มต้น | ||
ลักษณะการเก็บรักษาที่อุณหภูมิสูง | หลังจาก 1,000 ชั่วโมงโดยไม่มีโหลดที่อุณหภูมิ +70°C เมื่อกลับไปทดสอบที่อุณหภูมิ 20°C จะเป็นไปตามรายการต่อไปนี้ | ||
อัตราการเปลี่ยนแปลงความจุ | ภายใน ±30% ของค่าเริ่มต้น | ||
ESR | น้อยกว่า 4 เท่าของมูลค่ามาตรฐานเริ่มต้น | ||
ทนต่อความชื้น | หลังจากใช้แรงดันไฟฟ้าที่กำหนดอย่างต่อเนื่องเป็นเวลา 500 ชั่วโมงที่ +25°C90%RH เมื่อกลับไปทดสอบที่ 20°C จะเป็นไปตามรายการต่อไปนี้ | ||
อัตราการเปลี่ยนแปลงความจุ | ภายใน ±30% ของค่าเริ่มต้น | ||
ESR | น้อยกว่า 3 เท่าของมูลค่ามาตรฐานเริ่มต้น |
การเขียนแบบมิติผลิตภัณฑ์
LW6 | ก=1.5 |
ยาว>16 | ก=2.0 |
D | 8 | 10 | 12.5 | 16 | 18 | 22 |
d | 0.6 | 0.6 | 0.6 | 0.8 | 0.8 | 0.8 |
F | 3.5 | 5 | 5 | 7.5 | 7.5 | 10 |
ตัวเก็บประจุลิเธียมไอออน (LIC)เป็นส่วนประกอบอิเล็กทรอนิกส์ประเภทใหม่ที่มีโครงสร้างและหลักการทำงานแตกต่างจากตัวเก็บประจุและแบตเตอรี่ลิเธียมไอออนแบบดั้งเดิม พวกเขาใช้การเคลื่อนที่ของลิเธียมไอออนในอิเล็กโทรไลต์เพื่อกักเก็บประจุ ซึ่งมีความหนาแน่นของพลังงานสูง มีอายุการใช้งานยาวนาน และมีความสามารถในการคายประจุอย่างรวดเร็ว เมื่อเปรียบเทียบกับตัวเก็บประจุและแบตเตอรี่ลิเธียมไอออนทั่วไป LIC มีความหนาแน่นของพลังงานที่สูงกว่าและอัตราการคายประจุที่เร็วกว่า ทำให้ได้รับการยอมรับอย่างกว้างขวางว่าเป็นความก้าวหน้าครั้งสำคัญในการกักเก็บพลังงานในอนาคต
การใช้งาน:
- ยานพาหนะไฟฟ้า (EV): เนื่องจากความต้องการพลังงานสะอาดทั่วโลกเพิ่มขึ้น LIC จึงถูกนำมาใช้กันอย่างแพร่หลายในระบบพลังงานของยานพาหนะไฟฟ้า ความหนาแน่นของพลังงานที่สูงและคุณลักษณะการปล่อยประจุที่รวดเร็วทำให้รถยนต์ไฟฟ้าสามารถบรรลุระยะการขับขี่ที่ยาวขึ้นและความเร็วในการชาร์จที่เร็วขึ้น ซึ่งช่วยเร่งให้เกิดการยอมรับและการแพร่กระจายของยานพาหนะไฟฟ้า
- การจัดเก็บพลังงานทดแทน: LIC ยังใช้สำหรับเก็บพลังงานแสงอาทิตย์และพลังงานลม การแปลงพลังงานหมุนเวียนเป็นไฟฟ้าและเก็บไว้ใน LICs ช่วยให้เกิดการใช้อย่างมีประสิทธิภาพและการจัดหาพลังงานที่มั่นคง ส่งเสริมการพัฒนาและการประยุกต์ใช้พลังงานหมุนเวียน
- อุปกรณ์อิเล็กทรอนิกส์เคลื่อนที่: เนื่องจากความหนาแน่นของพลังงานสูงและความสามารถในการคายประจุที่รวดเร็ว LIC จึงถูกนำมาใช้อย่างกว้างขวางในอุปกรณ์อิเล็กทรอนิกส์เคลื่อนที่ เช่น สมาร์ทโฟน แท็บเล็ต และอุปกรณ์อิเล็กทรอนิกส์แบบพกพา ช่วยให้อายุการใช้งานแบตเตอรี่ยาวนานขึ้นและความเร็วในการชาร์จที่เร็วขึ้น ช่วยเพิ่มประสบการณ์ผู้ใช้และการพกพาอุปกรณ์อิเล็กทรอนิกส์เคลื่อนที่
- ระบบกักเก็บพลังงาน: ในระบบกักเก็บพลังงาน LIC ถูกนำมาใช้เพื่อการปรับสมดุลโหลด การโกนสูงสุด และการจัดหาพลังงานสำรอง การตอบสนองที่รวดเร็วและความน่าเชื่อถือทำให้ LIC เป็นตัวเลือกที่เหมาะสมที่สุดสำหรับระบบกักเก็บพลังงาน ปรับปรุงความเสถียรและความน่าเชื่อถือของกริด
ข้อดีเหนือตัวเก็บประจุอื่นๆ:
- ความหนาแน่นพลังงานสูง: LIC มีความหนาแน่นของพลังงานสูงกว่าตัวเก็บประจุแบบเดิม ทำให้สามารถเก็บพลังงานไฟฟ้าได้มากขึ้นในปริมาณที่น้อยลง ส่งผลให้การใช้พลังงานมีประสิทธิภาพมากขึ้น
- การชาร์จ-คายประจุอย่างรวดเร็ว: เมื่อเปรียบเทียบกับแบตเตอรี่ลิเธียมไอออนและตัวเก็บประจุแบบทั่วไป LIC ให้อัตราการคายประจุที่เร็วกว่า ช่วยให้การชาร์จและการคายประจุเร็วขึ้น เพื่อตอบสนองความต้องการการชาร์จความเร็วสูงและเอาต์พุตพลังงานสูง
- วงจรชีวิตยาว: LIC มีวงจรชีวิตที่ยาวนาน ซึ่งสามารถผ่านรอบการคายประจุได้หลายพันรอบโดยไม่ทำให้ประสิทธิภาพลดลง ส่งผลให้อายุการใช้งานยาวนานขึ้นและค่าบำรุงรักษาลดลง
- ความเป็นมิตรต่อสิ่งแวดล้อมและความปลอดภัย: แตกต่างจากแบตเตอรี่นิกเกิลแคดเมียมและแบตเตอรี่ลิเธียมโคบอลต์ออกไซด์แบบดั้งเดิม LICs ปราศจากโลหะหนักและสารพิษ ซึ่งแสดงความเป็นมิตรต่อสิ่งแวดล้อมและความปลอดภัยที่สูงกว่า จึงช่วยลดมลภาวะต่อสิ่งแวดล้อมและความเสี่ยงของการระเบิดของแบตเตอรี่
บทสรุป:
ในฐานะอุปกรณ์กักเก็บพลังงานรูปแบบใหม่ ตัวเก็บประจุลิเธียมไอออนมีโอกาสการใช้งานมากมายและมีศักยภาพทางการตลาดที่สำคัญ ความหนาแน่นของพลังงานสูง ความสามารถในการคายประจุที่รวดเร็ว อายุการใช้งานยาวนาน และข้อได้เปรียบด้านความปลอดภัยต่อสิ่งแวดล้อม ทำให้สิ่งเหล่านี้เป็นความก้าวหน้าทางเทคโนโลยีที่สำคัญในการกักเก็บพลังงานในอนาคต พวกเขาพร้อมที่จะมีบทบาทสำคัญในการส่งเสริมการเปลี่ยนผ่านสู่พลังงานสะอาดและเพิ่มประสิทธิภาพการใช้พลังงาน
หมายเลขผลิตภัณฑ์ | อุณหภูมิในการทำงาน (℃) | พิกัดแรงดันไฟฟ้า (V.dc) | ความจุ (F) | เส้นผ่านศูนย์กลาง ง(มิลลิเมตร) | ความยาว L (มม.) | ESR (mΩสูงสุด) | กระแสไฟรั่ว 72 ชั่วโมง (μA) | ชีวิต (ชม.) |
SDL2R7L1050812 | -40~70 | 2.7 | 1 | 8 | 11.5 | 160 | 2 | 1,000 |
SDL2R7L2050813 | -40~70 | 2.7 | 2 | 8 | 13 | 120 | 4 | 1,000 |
SDL2R7L3350820 | -40~70 | 2.7 | 3.3 | 8 | 20 | 80 | 6 | 1,000 |
SDL2R7L3351016 | -40~70 | 2.7 | 3.3 | 10 | 16 | 70 | 6 | 1,000 |
SDL2R7L5050825 | -40~70 | 2.7 | 5 | 8 | 25 | 65 | 10 | 1,000 |
SDL2R7L5051020 | -40~70 | 2.7 | 5 | 10 | 20 | 50 | 10 | 1,000 |
SDL2R7L7051020 | -40~70 | 2.7 | 7 | 10 | 20 | 45 | 14 | 1,000 |
SDL2R7L1061025 | -40~70 | 2.7 | 10 | 10 | 25 | 35 | 20 | 1,000 |
SDL2R7L1061320 | -40~70 | 2.7 | 10 | 12.5 | 20 | 30 | 20 | 1,000 |
SDL2R7L1561325 | -40~70 | 2.7 | 15 | 12.5 | 25 | 25 | 30 | 1,000 |
SDL2R7L2561625 | -40~70 | 2.7 | 25 | 16 | 25 | 24 | 50 | 1,000 |
SDL2R7L5061840 | -40~70 | 2.7 | 50 | 18 | 40 | 15 | 100 | 1,000 |
SDL2R7L1072245 | -40~70 | 2.7 | 100 | 22 | 45 | 14 | 120 | 1,000 |
SDL2R7L1672255 | -40~70 | 2.7 | 160 | 22 | 55 | 12 | 140 | 1,000 |